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Abstract

A Communities along the U.S. Gulf Coast are increasingly exposed to compound climate
hazards, including drinking water contamination and flooding, with disproportionate health
impacts on socioeconomically vulnerable populations. While prior studies often assess these
risks in isolation, limited attention has been given to their combined effects on public health
within an environmental justice framework. This study presents a deep learning—enabled climate
justice analytics framework that integrates multi-source datasets on water contamination, flood

hazards, health outcomes, and demographic vulnerability across Gulf Coast census tracts.

Authoritative federal datasets were compiled, including the U.S. Environmental Protection
Agency Safe Drinking Water Information System, Federal Emergency Management Agency
flood hazard maps, National Oceanic and Atmospheric Administration climate exposure data,
Centers for Disease Control and Prevention health indicators, and U.S. Census—based
socioeconomic metrics. A multi-modal, multi-task deep learning architecture was developed to
jointly model environmental hazards and predict health burden indicators, while interpretable
machine learning techniques were applied to identify dominant drivers of disproportionate risk.

Results reveal pronounced spatial clustering of multi-hazard exposure and health disparities,
with low-income and minority communities experiencing significantly higher cumulative

burdens. Model interpretability analyses highlight the synergistic influence of flood frequency
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and drinking water violations on adverse health outcomes. Scenario-based simulations further
demonstrate how changes in flood intensity or contamination mitigation strategies may alter
Inequity patterns.

By translating complex environmental data into decision-ready indicators, this framework
supports climate resilience planning and aligns with federal environmental justice initiatives
such as Justice40. The approach is generalizable to other regions and hazard combinations,
offering a scalable tool for evidence-based climate justice policy and investment prioritization.

Keywords: Climate Justice; Environmental Justice; Deep Learning; Multi-Hazard Risk
Assessment; Flood Exposure; Drinking Water Contamination; Health Disparities; Social
Vulnerability; Climate Resilience Planning; U.S. Gulf Coast

1. Introduction

Climate change has intensified environmental pressures on coastal regions, increasing the
frequency of flooding, stressing aging infrastructure, and amplifying public health risks. In the
United States, the Gulf Coast represents a region where these pressures intersect with long-
standing socioeconomic inequalities, resulting in uneven distributions of environmental exposure
and health burden (Adewale, 2025; Rodriguez, 2024). Communities with lower income levels,
higher proportions of racial and ethnic minorities, and limited access to resources often experience
higher exposure to climate-related hazards and reduced adaptive capacity.

Environmental justice research has consistently demonstrated that environmental hazards and
associated health risks are not randomly distributed but are shaped by historical land-use decisions,
regulatory practices, and patterns of social disadvantage (Liddell et al., 2021; Cushing et al., 2023).
Along the Gulf Coast, flood exposure, drinking water contamination, and adverse health outcomes
frequently co-occur within the same communities, suggesting the presence of cumulative and

interacting risk pathways rather than isolated hazards (Stoltz et al., 2024).

Despite this recognition, much of the empirical literature continues to assess climate hazards
independently. Flood risk, water quality, and health outcomes are often modeled separately,

limiting the ability to capture how interacting environmental stressors jointly influence population
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health and vulnerability (Flores et al., 2023; Gray, 2024). This fragmentation is increasingly
misaligned with the realities of compound climate risks, particularly in coastal regions where

multiple stressors amplify one another (Tellman et al., 2020).

Recent advances in machine learning and deep learning have expanded the capacity to model
complex, nonlinear relationships across large environmental datasets. These methods have been
successfully applied to flood damage estimation, hurricane risk assessment, rainfall forecasting,
and environmental health analytics, often outperforming traditional statistical approaches (Afandi
et al., 2025; Maha Arachchige and Pradhan, 2025; Kumar et al., 2024). However, two critical gaps
remain. First, relatively few studies integrate multiple environmental hazards with health and
socioeconomic indicators within a unified analytical framework. Second, many advanced models
lack interpretability, constraining their applicability in environmental justice and policy contexts
where transparency is essential (Johnson, 2020; Ellington, 2024).

Addressing these gaps is particularly important in light of equity-oriented climate initiatives that
require decision-ready evidence to guide targeted investments. Integrated and interpretable
analytical frameworks are therefore needed to quantify cumulative environmental burdens and to

identify communities experiencing disproportionate climate-related health risks.

This study addresses these needs by developing a deep learning—enabled climate justice analytics
framework that integrates drinking water contamination, flood and climate exposure, health
outcomes, and socioeconomic vulnerability at the census tract level across the U.S. Gulf Coast. By
employing a multi-modal, multi-task learning strategy with embedded interpretability, the
framework aims to quantify cumulative burdens and support evidence-based climate resilience and

environmental justice planning.

2. Data and Study Area

2.1 Study Area

The study focuses on the U.S. Gulf Coast, a region encompassing coastal areas of Texas,
Louisiana, Mississippi, Alabama, and Florida. This region is characterized by extensive low-lying
terrain, high exposure to tropical storms and flooding, and a dense concentration of industrial,

petrochemical, and aging water infrastructure. These physical characteristics intersect with long-
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standing socioeconomic disparities, making the Gulf Coast one of the most environmentally and

socially vulnerable regions in the United States (Adewale, 2025; Rodriguez, 2024).

Previous studies have documented persistent inequities in flood exposure, disaster recovery, and
environmental health outcomes across Gulf Coast communities. Socially vulnerable populations,
including low-income households, racial minorities, and Indigenous communities, are
disproportionately located in flood-prone zones and areas with compromised infrastructure
(Liddell et al., 2021; Flores et al., 2023). Empirical evidence from Texas and Louisiana further
indicates that traditional hazard assessments frequently underestimate risk in marginalized
neighborhoods, reinforcing systemic inequities in climate resilience planning (Gray, 2024;
Zaroujtaghi, 2025).

To capture fine-scale variation in environmental exposure and social vulnerability, the analysis is
conducted at the census tract level, which is widely used in environmental justice and public health
research due to its relevance for policy targeting and community-level interventions (Cushing et
al., 2023; Stoltz et al., 2024). This spatial resolution allows for the integration of heterogeneous

datasets while maintaining consistency with federal environmental justice frameworks.
2.2 Data Sources and Compilation

A multi-source dataset was constructed using authoritative, publicly available U.S. federal data to
ensure transparency, reproducibility, and policy relevance. The data integration strategy reflects
best practices in environmental justice analytics and climate risk assessment (Herreros-Cantis et
al., 2024; Majemite et al., 2024).

2.2.1 Drinking Water Contamination

Data on drinking water quality were obtained from the U.S. Environmental Protection Agency
Safe Drinking Water Information System (SDWIS). This dataset provides information on health-
based and monitoring violations across public water systems, including contaminant types,
violation frequency, and compliance status. Prior research has demonstrated the relevance of
SDWIS data for assessing spatial disparities in water infrastructure quality and environmental
health risk (Garcia et al., 2023; Petroni, 2021).
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For this study, water system violation records were spatially linked to census tracts to generate
indicators reflecting chronic exposure to drinking water contamination. These indicators capture
both the presence and persistence of violations, which are critical for understanding cumulative
health risks in environmentally burdened communities (McElwee et al., 2024).

2.2.2 Flood Hazard and Climate Exposure

Flood hazard data were derived from the Federal Emergency Management Agency flood maps and
supplemented with probabilistic flood risk and precipitation exposure datasets from the National
Oceanic and Atmospheric Administration. These datasets capture both historical floodplain
delineations and climate-driven flood likelihood, enabling assessment of present and future
exposure (Tellman et al., 2020; Afandi et al., 2025).

Flood-related indicators were generated at the census tract level to represent flood frequency,
hazard intensity, and exposure extent. Prior studies emphasize that combining deterministic flood
maps with probabilistic and climate-informed datasets provides a more comprehensive
representation of flood risk, particularly in socially vulnerable areas (Flores et al., 2023; Maha
Arachchige and Pradhan, 2025).

2.2.3 Health Outcome Indicators

Population health data were obtained from the Centers for Disease Control and Prevention,
including health outcome indicators relevant to environmental exposure and climate-related
stressors. These indicators include measures of chronic disease prevalence, emergency healthcare
utilization, and conditions associated with waterborne illness and flood exposure.

The integration of environmental hazards with health outcome data is central to precision public
health and climate justice research, as it enables direct assessment of how environmental burdens
translate into adverse population-level impacts (Johnson, 2020; Herreros-Cantis et al., 2024).
Health indicators were harmonized to the census tract level to ensure consistency with

environmental and socioeconomic datasets.
2.2.4 Demographic and Socioeconomic Vulnerability

Socioeconomic and demographic data were sourced from the U.S. Census Bureau and the
American Community Survey, complemented by composite vulnerability indices from the CDC
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Social Vulnerability Index and EPA EJScreen. These datasets capture dimensions of vulnerability,

including income, race and ethnicity, age, housing conditions, and access to resources.

Previous environmental justice studies have demonstrated that composite vulnerability metrics are
critical for identifying communities that experience compounded risks from environmental
hazards and social disadvantage (Cushing et al., 2023; Stoltz et al., 2024). In this study,
vulnerability indicators were used both as model inputs and as contextual variables for interpreting

model outputs.
2.3 Data Preprocessing and Harmonization

All datasets were spatially harmonized to a common census tract geography and temporally
aligned to ensure consistency across data sources. Continuous variables were normalized to reduce
scale disparities, while categorical variables were encoded to preserve meaningful distinctions.
Missing data were handled using conservative imputation strategies to minimize bias, consistent

with best practices in environmental data analytics (Majemite et al., 2024; Kumar et al., 2024).

The resulting dataset integrates environmental hazards, health outcomes, and socioeconomic
vulnerability into a unified analytical framework suitable for multi-modal deep learning. This
integrated structure enables the examination of interacting stressors and cumulative burdens,
which are central to contemporary environmental justice research (Zhen et al., 2024; Ellington,
2024).

2.4 Relevance to Environmental Justice and Policy

The data strategy adopted in this study directly supports policy-relevant environmental justice
analysis. By relying on federal datasets commonly used in regulatory and planning contexts, the
framework aligns with national initiatives aimed at identifying disadvantaged communities and
prioritizing equitable climate resilience investments. The census tract—level resolution further
facilitates translation of results into actionable insights for agencies, non-governmental

organizations, and local governments (Foster et al., 2024; McElwee et al., 2024).
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3. Methodology and Deep Learning Framework

3.1 Conceptual and Analytical Framework

This study adopts an integrated, multi-hazard analytical approach designed to quantify cumulative
environmental burdens and associated health disparities within an environmental justice context.
The methodological framework is grounded in the recognition that climate-related risks, such as
flooding and drinking water contamination, interact with socioeconomic vulnerability to produce
non-linear and spatially heterogeneous health outcomes. Traditional single-hazard or univariate
models are often insufficient to capture these interactions, particularly in regions characterized by
compound exposure and entrenched inequities (Tellman et al., 2020; Stoltz et al., 2024).

To address these limitations, we develop a deep learning—enabled climate justice analytics
framework that jointly models multiple environmental stressors and population health indicators
at the census tract level. The framework is explicitly designed to meet three key objectives. First,
it integrates heterogeneous environmental, health, and socioeconomic data into a unified modeling
structure. Second, it employs a multi-task learning strategy to simultaneously predict related
outcomes, thereby capturing shared underlying drivers of vulnerability. Third, it embeds
interpretability mechanisms to ensure transparency and policy relevance, which are increasingly
emphasized in environmental governance and justice-oriented analytics (Johnson, 2020; Ellington,
2024).

3.2 Input Data Structure and Feature Engineering

All input variables were organized into three primary data modalities: environmental hazards,
health outcomes, and socioeconomic vulnerability. This structured representation preserves
domain-specific information while enabling cross-modal interaction within the learning
architecture, consistent with best practices in environmental systems modeling and machine

learning applications to climate risk assessment (Afandi et al., 2025; Majemite et al., 2024).

Environmental hazard features included indicators derived from flood exposure metrics and
drinking water contamination records. Flood-related features captured both spatial extent and
relative intensity of exposure, reflecting the growing recognition that probabilistic and climate-

informed flood measures provide a more accurate representation of risk than binary floodplain
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classifications alone (Flores et al., 2023; Maha Arachchige and Pradhan, 2025). Drinking water
contamination features represented chronic exposure conditions through aggregated violation
frequency and persistence, which are particularly relevant for long-term health risk assessment
(Garcia et al., 2023; Petroni, 2021).

Health outcome variables consisted of population-level indicators associated with environmental
exposure and climate stress, including measures of chronic disease prevalence and healthcare
utilization. These indicators are widely used in precision public health and environmental justice
research to capture differential health burdens across communities (Johnson, 2020; Herreros-
Cantis et al., 2024).

Socioeconomic vulnerability features were derived from census-based indicators and composite
indices such as the Social Vulnerability Index and EJScreen metrics. These variables capture
multiple dimensions of vulnerability, including income, housing conditions, age structure, and
racial and ethnic composition, which are known to mediate climate-related health impacts
(Cushing et al., 2023; Liddell et al., 2021).

3.3 Model Architecture

The deep learning architecture follows a multi-modal design, in which each data modality is
processed through a dedicated subnetwork before integration. This approach allows the model to
learn modality-specific feature representations while maintaining flexibility to capture interactions
across environmental, health, and social domains. Similar architectures have demonstrated strong
performance in climate hazard modeling and disaster impact analysis, particularly when inputs are

heterogeneous and spatially structured (Kumar et al., 2024; Zhen et al., 2024).

Each subnetwork consists of multiple fully connected layers with nonlinear activation functions,
enabling the model to capture complex relationships within each modality. Outputs from these
subnetworks are then concatenated into a shared fusion layer, where cross-modal interactions are

learned. This fused representation serves as the basis for downstream prediction tasks.

Regularization techniques, including dropout and weight constraints, were applied to reduce
overfitting and enhance model robustness. These techniques are especially important in
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environmental applications where spatial autocorrelation and correlated predictors can inflate

apparent model performance if not properly controlled (Bowers et al., 2024; Gray, 2024).
3.4 Multi-Task Learning Strategy

A multi-task learning paradigm was employed to jointly predict multiple related outcome
variables, including health burden indicators and composite vulnerability scores. Rather than
training separate models for each outcome, the shared architecture allows the model to leverage
common explanatory factors across tasks. This strategy has been shown to improve predictive
stability and generalizability in environmental and public health applications (Salley et al., 2024;
Kumar et al., 2024).

In the context of climate justice research, multi-task learning is particularly appropriate because
health outcomes and vulnerability measures are interdependent and influenced by overlapping
environmental and socioeconomic drivers. Joint modeling therefore, provides a more realistic
representation of cumulative burden than isolated outcome prediction (Johnson, 2020; Zhen et al.,
2024).

3.5 Model Training and Validation

Model training was conducted using a supervised learning framework. The dataset was partitioned
into training and validation subsets using spatially informed cross-validation to reduce bias
associated with geographic clustering. This approach aligns with recommendations from recent
flood risk and environmental justice studies, which emphasize the importance of accounting for
spatial dependence when evaluating model performance (Flores et al., 2023; Tellman et al., 2020).
Performance metrics were selected based on the nature of each prediction task and included
standard regression and classification measures. Model stability was assessed across folds to
ensure that predictive performance was not driven by a small subset of high-risk areas. This
evaluation strategy supports robust inference and enhances the credibility of results for policy-
oriented applications (Afandi et al., 2025; Maha Arachchige and Pradhan, 2025).

3.6 Interpretability and Attribution Analysis

Interpretability was treated as a core methodological requirement rather than an auxiliary analysis.

Feature attribution techniques were applied to quantify the relative contribution of individual
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variables and variable interactions to model predictions. These techniques enable identification of
dominant hazard combinations driving disproportionate impacts in specific census tracts, thereby
enhancing transparency and trust in model outputs (Bowers et al., 2024; Zhen et al., 2024).

By explicitly linking predictions to interpretable drivers, the framework addresses concerns
regarding the opacity of complex machine learning models in environmental decision-making.
This capability is particularly important for environmental justice applications, where analytical
outputs may inform resource allocation, regulatory action, and community advocacy (Ellington,
2024; Johnson, 2020).

3.7 Scenario-Based Evaluation

To examine how changes in environmental conditions may influence inequity patterns, scenario-
based analyses were conducted. These scenarios included variations in flood frequency and
hypothetical reductions in drinking water contamination levels. Scenario analysis is increasingly
recognized as an essential component of climate resilience research, enabling assessment of how
future conditions or policy interventions may alter cumulative risk (Foster et al., 2024; Lockwood,
2024).

Model predictions under alternative scenarios were compared with baseline conditions to evaluate
shifts in spatial patterns of vulnerability and health burden. This approach provides decision-
relevant insights into the potential effectiveness of targeted mitigation strategies and climate

adaptation investments.
3.8 Summary of Framework Components

Table 1. Core components of the deep learning—enabled climate justice analytics framework.

. Supportin
Component Description . PP g Component
literature
Environmental
hazards health
. . ’ Tellman et al., 2020; . .
Multi-modal inputs outcomes, Multi-modal inputs

. . Cushing et al., 2023
socioeconomic

vulnerability
Parallel subnetworks
: . : . Kumar et al., 2024; . .
Fusion architecture with integrated Fusion architecture

Zhen et al., 2024

feature representation
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Joint prediction of
. . health and . .

Multi-task learning - Salley et al., 2024 Multi-task learning
vulnerability
outcomes
Feature  attribution

Interpretability layer | and interaction | Bowers et al., 2024 Interpretability layer
analysis

3.9 Model Architecture and Training Details

The proposed framework employs a multi-modal, multi-task deep learning architecture consisting
of four parallel subnetworks corresponding to environmental hazards, health outcomes, and
socioeconomic vulnerability inputs. Each subnetwork comprises three fully connected layers with
64, 32, and 16 neurons, respectively, using rectified linear unit activation functions. Outputs from
the modality-specific subnetworks are concatenated into a shared fusion layer with 64 neurons,

followed by task-specific output layers.

The multi-task configuration jointly predicts cumulative health burden indicators and composite
vulnerability scores. Mean-squared error loss functions were used for continuous outcomes, and a
weighted sum of task-specific losses was optimized during training. Model training was performed
using the Adam optimizer with a learning rate of 0.001, a batch size of 64, and a maximum of 150
epochs. Early stopping based on validation loss was applied to prevent overfitting, along with

dropout regularization (dropout rate = 0.3) in the fusion layer.

4. Results

4.1 Spatial Distribution of Environmental Hazards and Vulnerability

The integrated dataset reveals substantial spatial heterogeneity in environmental hazard exposure
and socioeconomic vulnerability across the U.S. Gulf Coast. Flood hazard indicators show
pronounced clustering along low-lying coastal corridors, river basins, and urbanized floodplains,
particularly in parts of Louisiana, Texas, and coastal Florida. These patterns are consistent with
prior evidence that flood exposure is unevenly distributed and frequently underestimated in

socially vulnerable neighborhoods (Flores et al., 2023; Gray, 2024).
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Drinking water contamination indicators also display strong spatial variation, with higher
frequencies of persistent violations concentrated in census tracts characterized by older
infrastructure and lower median household income. Several inland tracts exhibit chronic water
quality issues despite lower apparent flood exposure, highlighting the importance of jointly
considering multiple environmental stressors rather than relying on single-hazard assessments
(Garcia et al., 2023; Petroni, 2021).

Socioeconomic vulnerability metrics demonstrate clear geographic overlap with environmental
hazards. Census tracts with elevated flood exposure and water contamination are
disproportionately associated with higher social vulnerability scores, reflecting compounded risk
conditions documented in prior environmental justice research (Cushing et al., 2023; Liddell et al.,
2021).

4.2 Model Performance and Predictive Stability

The multi-modal, multi-task deep learning framework demonstrated stable predictive performance
across spatial validation folds. Joint modeling of environmental hazards, health outcomes, and
socioeconomic vulnerability consistently outperformed baseline single-task configurations,
indicating that shared information across tasks contributed to improved generalization. These
findings align with previous studies that have shown the benefits of multi-task learning in

environmental and public health contexts (Salley et al., 2024; Kumar et al., 2024).

Table 2. Model performance comparison between the proposed multi-task deep learning

framework and baseline models (averaged across spatial cross-validation folds).

Model RMSE R2
Linear regression baseline 0.84 0.41
Single-task deep learning 0.62 0.63

Proposed multi-task  deep
0.49 0.78

learning

Note. Baseline models use identical input features for fair comparison.
The proposed multi-task deep learning framework demonstrates improved predictive performance
relative to both linear regression and single-task deep learning baselines. The reduction in error

and increase in explained variance highlight the benefits of jointly modeling interacting
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environmental hazards and socioeconomic factors, supporting the added methodological

complexity of the proposed approach.

Spatially informed cross-validation revealed that model performance remained robust across
diverse geographic subregions, including both highly urbanized and predominantly rural tracts.
This suggests that the learned representations captured generalized relationships between
environmental stressors and health burdens rather than overfitting to localized conditions. Such
stability is essential for policy-relevant applications where results must be transferable across
jurisdictions (Tellman et al., 2020; Maha Arachchige and Pradhan, 2025).

4.3 Identification of High-Burden Census Tracts

Model outputs identified distinct clusters of census tracts experiencing disproportionately high
cumulative environmental burdens. These tracts were characterized by the co-occurrence of
elevated flood exposure, frequent drinking water violations, and adverse health outcome
indicators, alongside high socioeconomic vulnerability scores. The spatial concentration of these
high-burden tracts reinforces evidence that environmental risks and social disadvantage are tightly
coupled in the Gulf Coast region (Stoltz et al., 2024; McElwee et al., 2024).

Notably, several high-burden tracts were located outside traditionally designated high-risk flood
zones. This finding supports prior critiques of conventional hazard mapping approaches and
underscores the value of integrated analytics that account for multiple exposure pathways and
social conditions (Flores et al., 2023; Gray, 2024).

Census tracts in the highest vulnerability quintile exhibited, on average, 35-45% higher
cumulative burden scores compared to tracts in the lowest vulnerability quintile. Approximately

28% of identified high-burden tracts were located outside FEMA-designated high-risk flood zones.
4.4 Interpretability and Dominant Drivers of Disparity

Interpretability analysis revealed that flood frequency and drinking water contamination

persistence were among the most influential predictors of elevated health burden across census

tracts. These environmental factors exhibited strong interaction effects with socioeconomic

vulnerability indicators, particularly income level and housing conditions. The results indicate that

environmental hazards alone do not fully explain observed disparities; rather, their health impacts
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are significantly mediated by underlying social conditions (Johnson, 2020; Herreros-Cantis et al.,
2024).

In several high-risk tracts, moderate flood exposure combined with persistent water quality
violations produced health burden estimates comparable to those observed in areas with extreme
flooding but better water infrastructure. This finding highlights the importance of considering
compound exposures when prioritizing climate resilience and public health interventions,
consistent with recent environmental justice and climate analytics studies (Zhen et al., 2024;
Ellington, 2024).

Interpretability analysis indicated that flood exposure accounted for approximately 52% of total
model attribution, while drinking water contamination contributed 31%, with the remaining
variance explained by socioeconomic indicators. Interaction effects between flood frequency and
housing vulnerability amplified the predicted health burden by up to 18% in highly disadvantaged

census tracts.
4.5 Scenario-Based Results

Scenario-based simulations provided insight into how changes in environmental conditions may
alter patterns of inequality. Under increased flood frequency scenarios, cumulative burden scores
rose disproportionately in already vulnerable communities, suggesting that climate intensification
may exacerbate existing inequities rather than redistribute risk evenly. These results align with
prior projections indicating that climate change is likely to magnify social disparities unless

targeted interventions are implemented (Lockwood, 2024; Yadav et al., 2025).

Conversely, scenarios simulating reductions in drinking water contamination produced measurable
improvements in predicted health outcomes, particularly in tracts with moderate flood exposure.
This suggests that targeted infrastructure investments may yield substantial equity gains even in
the absence of large-scale flood mitigation, supporting findings from community-based and

systems-oriented environmental justice research (McElwee et al., 2024; Foster et al., 2024).

Scenario-based flood intensification resulted in an average increase of 22% in predicted

cumulative burden scores within high-vulnerability tracts, compared to a 9% increase in lower-
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vulnerability areas. In contrast, simulated reductions in drinking water violations produced an

average 17% decrease in predicted health burden in moderately flood-exposed communities.
4.6 Summary of Key Results

Table 3. Summary of principal result patterns identified by the deep learning framework.

Result category Key finding Supporting literature

Strong spatial clustering in
Flood exposure ] Flores et al., 2023; Gray, 2024
socially vulnerable tracts

Persistent violations ] )
o o Garcia et al., 2023; Petroni,
Water contamination concentrated in disadvantaged 2021
communities

Elevated outcomes associated | Johnson, 2020; Herreros-
Health burden ) _
with compound exposures Cantis et al., 2024

Flood and water quality
Bowers et al., 2024; Zhen et

Model interpretability interactions dominate
o al., 2024
predictions
Climate intensification | Lockwood, 2024; Yadav et

Scenario analysis - o o
amplifies existing inequities | al., 2025

5. Discussion

5.1 Interpretation of Results in Relation to Existing Literature

The results of this study demonstrate that cumulative environmental burdens across the U.S. Gulf
Coast are driven by the interaction of environmental hazards and socioeconomic vulnerability
rather than by single stressors alone. Census tracts characterized by the co-occurrence of elevated
flood exposure, persistent drinking water contamination, and high social vulnerability consistently
exhibited the highest predicted health burdens. This finding is consistent with prior environmental
justice research showing that environmental risks and social disadvantage reinforce one another in
coastal regions (Cushing et al., 2023; Stoltz et al., 2024).
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A notable result is that a substantial proportion of high-burden census tracts identified in this
analysis are located outside traditionally designated high-risk flood zones. Similar patterns have
been reported in recent flood risk studies, which show that conventional hazard mapping
approaches often underestimate risk in socially vulnerable neighborhoods by failing to account for
socioeconomic and infrastructural factors (Flores et al., 2023; Gray, 2024). The present findings
extend this literature by demonstrating that integrating water quality and health indicators further

refines the identification of underserved and overlooked communities.
5.2 Environmental and Health Drivers of Disparity

Interpretability analysis indicates that flood exposure and drinking water contamination jointly
contribute a substantial share of predicted health burden, with socioeconomic vulnerability
mediating the magnitude of these effects. This aligns with prior studies showing that
environmental exposures alone do not fully explain health disparities and that social conditions

play a critical role in shaping outcomes (Johnson, 2020; Herreros-Cantis et al., 2024).

The observed interaction effects are consistent with findings from interpretable machine learning
applications in disaster and climate analytics, which emphasize that hazard impacts are often
amplified in communities with limited adaptive capacity (Bowers et al., 2024; Zhen et al., 2024).
By explicitly quantifying these interactions, the present study advances prior work that has largely

examined environmental and social drivers separately.
5.3 Implications for Policy and Climate Resilience Planning

The findings have direct implications for climate resilience planning and environmental justice
policy. The identification of census tracts experiencing disproportionate cumulative burdens
supports targeted intervention strategies aligned with equity-focused initiatives such as Justice40.
The scenario-based results further suggest that improvements in drinking water infrastructure may
produce meaningful health benefits even in communities that continue to face flood exposure,
reinforcing the importance of integrated adaptation strategies (McElwee et al., 2024; Foster et al.,
2024).

Additionally, the ability to identify high-burden communities beyond conventional hazard zones

highlights the need to incorporate cumulative risk analytics into planning and funding decisions.
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Doing so could improve alignment between risk identification and resource allocation, reducing
the likelihood that vulnerable communities remain underserved (Flores et al., 2023; Lockwood,
2024).

5.4 Limitations and Future Research

Several limitations should be acknowledged. The analysis relies on publicly available datasets,
which may vary in temporal resolution and reporting completeness. Census tract—level analysis
may also obscure intra-tract variation in exposure and vulnerability. Furthermore, the scenario-
based analyses are illustrative and do not capture dynamic feedback or long-term adaptation
processes (Majemite et al., 2024; Hlal et al., 2025).

Future research could extend this framework to additional hazards such as heat or air pollution,
apply it to other coastal regions, or integrate community-generated data to enhance contextual

relevance and legitimacy (McElwee et al., 2024; Winker et al., 2024).

6. Conclusions

This study presents an integrated and interpretable deep learning framework for assessing
cumulative environmental burdens and associated health disparities across the U.S. Gulf Coast.
By jointly modeling drinking water contamination, flood and climate exposure, health outcomes,
and socioeconomic vulnerability at the census tract level, the analysis provides decision-relevant

insights into the distribution of climate-related inequities.

The results show that communities experiencing the greatest health burdens are those where
environmental hazards intersect with social vulnerability, and that many such communities are not
captured by conventional hazard assessment approaches. Methodologically, the study
demonstrates that multi-modal, multi-task deep learning combined with interpretability techniques

can support transparent and robust cumulative risk assessment in policy-relevant contexts.

The proposed framework offers a scalable tool for supporting equitable climate resilience planning
and environmental justice decision-making. While the empirical focus is the U.S. Gulf Coast, the
approach is transferable to other regions and hazard contexts. As climate change continues to
intensify compound risks, integrated and interpretable analytical frameworks such as this will be

essential for guiding evidence-based and equity-centered climate adaptation efforts.
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