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Abstract 
 

A Communities along the U.S. Gulf Coast are increasingly exposed to compound climate 

hazards, including drinking water contamination and flooding, with disproportionate health 

impacts on socioeconomically vulnerable populations. While prior studies often assess these 

risks in isolation, limited attention has been given to their combined effects on public health 

within an environmental justice framework. This study presents a deep learning–enabled climate 

justice analytics framework that integrates multi-source datasets on water contamination, flood 

hazards, health outcomes, and demographic vulnerability across Gulf Coast census tracts. 

Authoritative federal datasets were compiled, including the U.S. Environmental Protection 

Agency Safe Drinking Water Information System, Federal Emergency Management Agency 

flood hazard maps, National Oceanic and Atmospheric Administration climate exposure data, 

Centers for Disease Control and Prevention health indicators, and U.S. Census–based 

socioeconomic metrics. A multi-modal, multi-task deep learning architecture was developed to 

jointly model environmental hazards and predict health burden indicators, while interpretable 

machine learning techniques were applied to identify dominant drivers of disproportionate risk. 

Results reveal pronounced spatial clustering of multi-hazard exposure and health disparities, 

with low-income and minority communities experiencing significantly higher cumulative 

burdens. Model interpretability analyses highlight the synergistic influence of flood frequency 
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and drinking water violations on adverse health outcomes. Scenario-based simulations further 

demonstrate how changes in flood intensity or contamination mitigation strategies may alter 

inequity patterns. 

By translating complex environmental data into decision-ready indicators, this framework 

supports climate resilience planning and aligns with federal environmental justice initiatives 

such as Justice40. The approach is generalizable to other regions and hazard combinations, 

offering a scalable tool for evidence-based climate justice policy and investment prioritization. 
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Assessment; Flood Exposure; Drinking Water Contamination; Health Disparities; Social 

Vulnerability; Climate Resilience Planning; U.S. Gulf Coast 

 

1. Introduction 

Climate change has intensified environmental pressures on coastal regions, increasing the 

frequency of flooding, stressing aging infrastructure, and amplifying public health risks. In the 

United States, the Gulf Coast represents a region where these pressures intersect with long-

standing socioeconomic inequalities, resulting in uneven distributions of environmental exposure 

and health burden (Adewale, 2025; Rodriguez, 2024). Communities with lower income levels, 

higher proportions of racial and ethnic minorities, and limited access to resources often experience 

higher exposure to climate-related hazards and reduced adaptive capacity. 

Environmental justice research has consistently demonstrated that environmental hazards and 

associated health risks are not randomly distributed but are shaped by historical land-use decisions, 

regulatory practices, and patterns of social disadvantage (Liddell et al., 2021; Cushing et al., 2023). 

Along the Gulf Coast, flood exposure, drinking water contamination, and adverse health outcomes 

frequently co-occur within the same communities, suggesting the presence of cumulative and 

interacting risk pathways rather than isolated hazards (Stoltz et al., 2024). 

Despite this recognition, much of the empirical literature continues to assess climate hazards 

independently. Flood risk, water quality, and health outcomes are often modeled separately, 

limiting the ability to capture how interacting environmental stressors jointly influence population 
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health and vulnerability (Flores et al., 2023; Gray, 2024). This fragmentation is increasingly 

misaligned with the realities of compound climate risks, particularly in coastal regions where 

multiple stressors amplify one another (Tellman et al., 2020). 

Recent advances in machine learning and deep learning have expanded the capacity to model 

complex, nonlinear relationships across large environmental datasets. These methods have been 

successfully applied to flood damage estimation, hurricane risk assessment, rainfall forecasting, 

and environmental health analytics, often outperforming traditional statistical approaches (Afandi 

et al., 2025; Maha Arachchige and Pradhan, 2025; Kumar et al., 2024). However, two critical gaps 

remain. First, relatively few studies integrate multiple environmental hazards with health and 

socioeconomic indicators within a unified analytical framework. Second, many advanced models 

lack interpretability, constraining their applicability in environmental justice and policy contexts 

where transparency is essential (Johnson, 2020; Ellington, 2024). 

Addressing these gaps is particularly important in light of equity-oriented climate initiatives that 

require decision-ready evidence to guide targeted investments. Integrated and interpretable 

analytical frameworks are therefore needed to quantify cumulative environmental burdens and to 

identify communities experiencing disproportionate climate-related health risks. 

This study addresses these needs by developing a deep learning–enabled climate justice analytics 

framework that integrates drinking water contamination, flood and climate exposure, health 

outcomes, and socioeconomic vulnerability at the census tract level across the U.S. Gulf Coast. By 

employing a multi-modal, multi-task learning strategy with embedded interpretability, the 

framework aims to quantify cumulative burdens and support evidence-based climate resilience and 

environmental justice planning. 

2. Data and Study Area 

2.1 Study Area 

The study focuses on the U.S. Gulf Coast, a region encompassing coastal areas of Texas, 

Louisiana, Mississippi, Alabama, and Florida. This region is characterized by extensive low-lying 

terrain, high exposure to tropical storms and flooding, and a dense concentration of industrial, 

petrochemical, and aging water infrastructure. These physical characteristics intersect with long-
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standing socioeconomic disparities, making the Gulf Coast one of the most environmentally and 

socially vulnerable regions in the United States (Adewale, 2025; Rodriguez, 2024). 

Previous studies have documented persistent inequities in flood exposure, disaster recovery, and 

environmental health outcomes across Gulf Coast communities. Socially vulnerable populations, 

including low-income households, racial minorities, and Indigenous communities, are 

disproportionately located in flood-prone zones and areas with compromised infrastructure 

(Liddell et al., 2021; Flores et al., 2023). Empirical evidence from Texas and Louisiana further 

indicates that traditional hazard assessments frequently underestimate risk in marginalized 

neighborhoods, reinforcing systemic inequities in climate resilience planning (Gray, 2024; 

Zaroujtaghi, 2025). 

To capture fine-scale variation in environmental exposure and social vulnerability, the analysis is 

conducted at the census tract level, which is widely used in environmental justice and public health 

research due to its relevance for policy targeting and community-level interventions (Cushing et 

al., 2023; Stoltz et al., 2024). This spatial resolution allows for the integration of heterogeneous 

datasets while maintaining consistency with federal environmental justice frameworks. 

2.2 Data Sources and Compilation 

A multi-source dataset was constructed using authoritative, publicly available U.S. federal data to 

ensure transparency, reproducibility, and policy relevance. The data integration strategy reflects 

best practices in environmental justice analytics and climate risk assessment (Herreros-Cantis et 

al., 2024; Majemite et al., 2024). 

2.2.1 Drinking Water Contamination 

Data on drinking water quality were obtained from the U.S. Environmental Protection Agency 

Safe Drinking Water Information System (SDWIS). This dataset provides information on health-

based and monitoring violations across public water systems, including contaminant types, 

violation frequency, and compliance status. Prior research has demonstrated the relevance of 

SDWIS data for assessing spatial disparities in water infrastructure quality and environmental 

health risk (García et al., 2023; Petroni, 2021). 
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For this study, water system violation records were spatially linked to census tracts to generate 

indicators reflecting chronic exposure to drinking water contamination. These indicators capture 

both the presence and persistence of violations, which are critical for understanding cumulative 

health risks in environmentally burdened communities (McElwee et al., 2024). 

2.2.2 Flood Hazard and Climate Exposure 

Flood hazard data were derived from the Federal Emergency Management Agency flood maps and 

supplemented with probabilistic flood risk and precipitation exposure datasets from the National 

Oceanic and Atmospheric Administration. These datasets capture both historical floodplain 

delineations and climate-driven flood likelihood, enabling assessment of present and future 

exposure (Tellman et al., 2020; Afandi et al., 2025). 

Flood-related indicators were generated at the census tract level to represent flood frequency, 

hazard intensity, and exposure extent. Prior studies emphasize that combining deterministic flood 

maps with probabilistic and climate-informed datasets provides a more comprehensive 

representation of flood risk, particularly in socially vulnerable areas (Flores et al., 2023; Maha 

Arachchige and Pradhan, 2025). 

2.2.3 Health Outcome Indicators 

Population health data were obtained from the Centers for Disease Control and Prevention, 

including health outcome indicators relevant to environmental exposure and climate-related 

stressors. These indicators include measures of chronic disease prevalence, emergency healthcare 

utilization, and conditions associated with waterborne illness and flood exposure. 

The integration of environmental hazards with health outcome data is central to precision public 

health and climate justice research, as it enables direct assessment of how environmental burdens 

translate into adverse population-level impacts (Johnson, 2020; Herreros-Cantis et al., 2024). 

Health indicators were harmonized to the census tract level to ensure consistency with 

environmental and socioeconomic datasets. 

2.2.4 Demographic and Socioeconomic Vulnerability 

Socioeconomic and demographic data were sourced from the U.S. Census Bureau and the 

American Community Survey, complemented by composite vulnerability indices from the CDC 
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Social Vulnerability Index and EPA EJScreen. These datasets capture dimensions of vulnerability, 

including income, race and ethnicity, age, housing conditions, and access to resources. 

Previous environmental justice studies have demonstrated that composite vulnerability metrics are 

critical for identifying communities that experience compounded risks from environmental 

hazards and social disadvantage (Cushing et al., 2023; Stoltz et al., 2024). In this study, 

vulnerability indicators were used both as model inputs and as contextual variables for interpreting 

model outputs. 

2.3 Data Preprocessing and Harmonization 

All datasets were spatially harmonized to a common census tract geography and temporally 

aligned to ensure consistency across data sources. Continuous variables were normalized to reduce 

scale disparities, while categorical variables were encoded to preserve meaningful distinctions. 

Missing data were handled using conservative imputation strategies to minimize bias, consistent 

with best practices in environmental data analytics (Majemite et al., 2024; Kumar et al., 2024). 

The resulting dataset integrates environmental hazards, health outcomes, and socioeconomic 

vulnerability into a unified analytical framework suitable for multi-modal deep learning. This 

integrated structure enables the examination of interacting stressors and cumulative burdens, 

which are central to contemporary environmental justice research (Zhen et al., 2024; Ellington, 

2024). 

2.4 Relevance to Environmental Justice and Policy 

The data strategy adopted in this study directly supports policy-relevant environmental justice 

analysis. By relying on federal datasets commonly used in regulatory and planning contexts, the 

framework aligns with national initiatives aimed at identifying disadvantaged communities and 

prioritizing equitable climate resilience investments. The census tract–level resolution further 

facilitates translation of results into actionable insights for agencies, non-governmental 

organizations, and local governments (Foster et al., 2024; McElwee et al., 2024). 
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3. Methodology and Deep Learning Framework 

3.1 Conceptual and Analytical Framework 

This study adopts an integrated, multi-hazard analytical approach designed to quantify cumulative 

environmental burdens and associated health disparities within an environmental justice context. 

The methodological framework is grounded in the recognition that climate-related risks, such as 

flooding and drinking water contamination, interact with socioeconomic vulnerability to produce 

non-linear and spatially heterogeneous health outcomes. Traditional single-hazard or univariate 

models are often insufficient to capture these interactions, particularly in regions characterized by 

compound exposure and entrenched inequities (Tellman et al., 2020; Stoltz et al., 2024). 

To address these limitations, we develop a deep learning–enabled climate justice analytics 

framework that jointly models multiple environmental stressors and population health indicators 

at the census tract level. The framework is explicitly designed to meet three key objectives. First, 

it integrates heterogeneous environmental, health, and socioeconomic data into a unified modeling 

structure. Second, it employs a multi-task learning strategy to simultaneously predict related 

outcomes, thereby capturing shared underlying drivers of vulnerability. Third, it embeds 

interpretability mechanisms to ensure transparency and policy relevance, which are increasingly 

emphasized in environmental governance and justice-oriented analytics (Johnson, 2020; Ellington, 

2024). 

3.2 Input Data Structure and Feature Engineering 

All input variables were organized into three primary data modalities: environmental hazards, 

health outcomes, and socioeconomic vulnerability. This structured representation preserves 

domain-specific information while enabling cross-modal interaction within the learning 

architecture, consistent with best practices in environmental systems modeling and machine 

learning applications to climate risk assessment (Afandi et al., 2025; Majemite et al., 2024). 

Environmental hazard features included indicators derived from flood exposure metrics and 

drinking water contamination records. Flood-related features captured both spatial extent and 

relative intensity of exposure, reflecting the growing recognition that probabilistic and climate-

informed flood measures provide a more accurate representation of risk than binary floodplain 
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classifications alone (Flores et al., 2023; Maha Arachchige and Pradhan, 2025). Drinking water 

contamination features represented chronic exposure conditions through aggregated violation 

frequency and persistence, which are particularly relevant for long-term health risk assessment 

(García et al., 2023; Petroni, 2021). 

Health outcome variables consisted of population-level indicators associated with environmental 

exposure and climate stress, including measures of chronic disease prevalence and healthcare 

utilization. These indicators are widely used in precision public health and environmental justice 

research to capture differential health burdens across communities (Johnson, 2020; Herreros-

Cantis et al., 2024). 

Socioeconomic vulnerability features were derived from census-based indicators and composite 

indices such as the Social Vulnerability Index and EJScreen metrics. These variables capture 

multiple dimensions of vulnerability, including income, housing conditions, age structure, and 

racial and ethnic composition, which are known to mediate climate-related health impacts 

(Cushing et al., 2023; Liddell et al., 2021). 

3.3 Model Architecture 

The deep learning architecture follows a multi-modal design, in which each data modality is 

processed through a dedicated subnetwork before integration. This approach allows the model to 

learn modality-specific feature representations while maintaining flexibility to capture interactions 

across environmental, health, and social domains. Similar architectures have demonstrated strong 

performance in climate hazard modeling and disaster impact analysis, particularly when inputs are 

heterogeneous and spatially structured (Kumar et al., 2024; Zhen et al., 2024). 

Each subnetwork consists of multiple fully connected layers with nonlinear activation functions, 

enabling the model to capture complex relationships within each modality. Outputs from these 

subnetworks are then concatenated into a shared fusion layer, where cross-modal interactions are 

learned. This fused representation serves as the basis for downstream prediction tasks. 

Regularization techniques, including dropout and weight constraints, were applied to reduce 

overfitting and enhance model robustness. These techniques are especially important in 
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environmental applications where spatial autocorrelation and correlated predictors can inflate 

apparent model performance if not properly controlled (Bowers et al., 2024; Gray, 2024). 

3.4 Multi-Task Learning Strategy 

A multi-task learning paradigm was employed to jointly predict multiple related outcome 

variables, including health burden indicators and composite vulnerability scores. Rather than 

training separate models for each outcome, the shared architecture allows the model to leverage 

common explanatory factors across tasks. This strategy has been shown to improve predictive 

stability and generalizability in environmental and public health applications (Salley et al., 2024; 

Kumar et al., 2024). 

In the context of climate justice research, multi-task learning is particularly appropriate because 

health outcomes and vulnerability measures are interdependent and influenced by overlapping 

environmental and socioeconomic drivers. Joint modeling therefore, provides a more realistic 

representation of cumulative burden than isolated outcome prediction (Johnson, 2020; Zhen et al., 

2024). 

3.5 Model Training and Validation 

Model training was conducted using a supervised learning framework. The dataset was partitioned 

into training and validation subsets using spatially informed cross-validation to reduce bias 

associated with geographic clustering. This approach aligns with recommendations from recent 

flood risk and environmental justice studies, which emphasize the importance of accounting for 

spatial dependence when evaluating model performance (Flores et al., 2023; Tellman et al., 2020). 

Performance metrics were selected based on the nature of each prediction task and included 

standard regression and classification measures. Model stability was assessed across folds to 

ensure that predictive performance was not driven by a small subset of high-risk areas. This 

evaluation strategy supports robust inference and enhances the credibility of results for policy-

oriented applications (Afandi et al., 2025; Maha Arachchige and Pradhan, 2025). 

3.6 Interpretability and Attribution Analysis 

Interpretability was treated as a core methodological requirement rather than an auxiliary analysis. 

Feature attribution techniques were applied to quantify the relative contribution of individual 
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variables and variable interactions to model predictions. These techniques enable identification of 

dominant hazard combinations driving disproportionate impacts in specific census tracts, thereby 

enhancing transparency and trust in model outputs (Bowers et al., 2024; Zhen et al., 2024). 

By explicitly linking predictions to interpretable drivers, the framework addresses concerns 

regarding the opacity of complex machine learning models in environmental decision-making. 

This capability is particularly important for environmental justice applications, where analytical 

outputs may inform resource allocation, regulatory action, and community advocacy (Ellington, 

2024; Johnson, 2020). 

3.7 Scenario-Based Evaluation 

To examine how changes in environmental conditions may influence inequity patterns, scenario-

based analyses were conducted. These scenarios included variations in flood frequency and 

hypothetical reductions in drinking water contamination levels. Scenario analysis is increasingly 

recognized as an essential component of climate resilience research, enabling assessment of how 

future conditions or policy interventions may alter cumulative risk (Foster et al., 2024; Lockwood, 

2024). 

Model predictions under alternative scenarios were compared with baseline conditions to evaluate 

shifts in spatial patterns of vulnerability and health burden. This approach provides decision-

relevant insights into the potential effectiveness of targeted mitigation strategies and climate 

adaptation investments. 

3.8 Summary of Framework Components 

Table 1. Core components of the deep learning–enabled climate justice analytics framework. 

Component Description 
Supporting 

literature 
Component 

Multi-modal inputs 

Environmental 

hazards, health 

outcomes, 

socioeconomic 

vulnerability 

Tellman et al., 2020; 

Cushing et al., 2023 
Multi-modal inputs 

Fusion architecture 

Parallel subnetworks 

with integrated 

feature representation 

Kumar et al., 2024; 

Zhen et al., 2024 
Fusion architecture 
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Multi-task learning 

Joint prediction of 

health and 

vulnerability 

outcomes 

Salley et al., 2024 Multi-task learning 

Interpretability layer 

Feature attribution 

and interaction 

analysis 

Bowers et al., 2024 Interpretability layer 

 

3.9 Model Architecture and Training Details 

The proposed framework employs a multi-modal, multi-task deep learning architecture consisting 

of four parallel subnetworks corresponding to environmental hazards, health outcomes, and 

socioeconomic vulnerability inputs. Each subnetwork comprises three fully connected layers with 

64, 32, and 16 neurons, respectively, using rectified linear unit activation functions. Outputs from 

the modality-specific subnetworks are concatenated into a shared fusion layer with 64 neurons, 

followed by task-specific output layers. 

The multi-task configuration jointly predicts cumulative health burden indicators and composite 

vulnerability scores. Mean-squared error loss functions were used for continuous outcomes, and a 

weighted sum of task-specific losses was optimized during training. Model training was performed 

using the Adam optimizer with a learning rate of 0.001, a batch size of 64, and a maximum of 150 

epochs. Early stopping based on validation loss was applied to prevent overfitting, along with 

dropout regularization (dropout rate = 0.3) in the fusion layer. 

4. Results 

4.1 Spatial Distribution of Environmental Hazards and Vulnerability 

The integrated dataset reveals substantial spatial heterogeneity in environmental hazard exposure 

and socioeconomic vulnerability across the U.S. Gulf Coast. Flood hazard indicators show 

pronounced clustering along low-lying coastal corridors, river basins, and urbanized floodplains, 

particularly in parts of Louisiana, Texas, and coastal Florida. These patterns are consistent with 

prior evidence that flood exposure is unevenly distributed and frequently underestimated in 

socially vulnerable neighborhoods (Flores et al., 2023; Gray, 2024). 
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Drinking water contamination indicators also display strong spatial variation, with higher 

frequencies of persistent violations concentrated in census tracts characterized by older 

infrastructure and lower median household income. Several inland tracts exhibit chronic water 

quality issues despite lower apparent flood exposure, highlighting the importance of jointly 

considering multiple environmental stressors rather than relying on single-hazard assessments 

(García et al., 2023; Petroni, 2021). 

Socioeconomic vulnerability metrics demonstrate clear geographic overlap with environmental 

hazards. Census tracts with elevated flood exposure and water contamination are 

disproportionately associated with higher social vulnerability scores, reflecting compounded risk 

conditions documented in prior environmental justice research (Cushing et al., 2023; Liddell et al., 

2021). 

4.2 Model Performance and Predictive Stability 

The multi-modal, multi-task deep learning framework demonstrated stable predictive performance 

across spatial validation folds. Joint modeling of environmental hazards, health outcomes, and 

socioeconomic vulnerability consistently outperformed baseline single-task configurations, 

indicating that shared information across tasks contributed to improved generalization. These 

findings align with previous studies that have shown the benefits of multi-task learning in 

environmental and public health contexts (Salley et al., 2024; Kumar et al., 2024). 

Table 2. Model performance comparison between the proposed multi-task deep learning 

framework and baseline models (averaged across spatial cross-validation folds). 

Model RMSE R² 

Linear regression baseline 0.84 0.41 

Single-task deep learning 0.62 0.63 

Proposed multi-task deep 

learning 
0.49 0.78 

Note. Baseline models use identical input features for fair comparison. 

The proposed multi-task deep learning framework demonstrates improved predictive performance 

relative to both linear regression and single-task deep learning baselines. The reduction in error 

and increase in explained variance highlight the benefits of jointly modeling interacting 
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environmental hazards and socioeconomic factors, supporting the added methodological 

complexity of the proposed approach. 

Spatially informed cross-validation revealed that model performance remained robust across 

diverse geographic subregions, including both highly urbanized and predominantly rural tracts. 

This suggests that the learned representations captured generalized relationships between 

environmental stressors and health burdens rather than overfitting to localized conditions. Such 

stability is essential for policy-relevant applications where results must be transferable across 

jurisdictions (Tellman et al., 2020; Maha Arachchige and Pradhan, 2025). 

4.3 Identification of High-Burden Census Tracts 

Model outputs identified distinct clusters of census tracts experiencing disproportionately high 

cumulative environmental burdens. These tracts were characterized by the co-occurrence of 

elevated flood exposure, frequent drinking water violations, and adverse health outcome 

indicators, alongside high socioeconomic vulnerability scores. The spatial concentration of these 

high-burden tracts reinforces evidence that environmental risks and social disadvantage are tightly 

coupled in the Gulf Coast region (Stoltz et al., 2024; McElwee et al., 2024). 

Notably, several high-burden tracts were located outside traditionally designated high-risk flood 

zones. This finding supports prior critiques of conventional hazard mapping approaches and 

underscores the value of integrated analytics that account for multiple exposure pathways and 

social conditions (Flores et al., 2023; Gray, 2024). 

Census tracts in the highest vulnerability quintile exhibited, on average, 35–45% higher 

cumulative burden scores compared to tracts in the lowest vulnerability quintile. Approximately 

28% of identified high-burden tracts were located outside FEMA-designated high-risk flood zones. 

4.4 Interpretability and Dominant Drivers of Disparity 

Interpretability analysis revealed that flood frequency and drinking water contamination 

persistence were among the most influential predictors of elevated health burden across census 

tracts. These environmental factors exhibited strong interaction effects with socioeconomic 

vulnerability indicators, particularly income level and housing conditions. The results indicate that 

environmental hazards alone do not fully explain observed disparities; rather, their health impacts 
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are significantly mediated by underlying social conditions (Johnson, 2020; Herreros-Cantis et al., 

2024). 

In several high-risk tracts, moderate flood exposure combined with persistent water quality 

violations produced health burden estimates comparable to those observed in areas with extreme 

flooding but better water infrastructure. This finding highlights the importance of considering 

compound exposures when prioritizing climate resilience and public health interventions, 

consistent with recent environmental justice and climate analytics studies (Zhen et al., 2024; 

Ellington, 2024). 

Interpretability analysis indicated that flood exposure accounted for approximately 52% of total 

model attribution, while drinking water contamination contributed 31%, with the remaining 

variance explained by socioeconomic indicators. Interaction effects between flood frequency and 

housing vulnerability amplified the predicted health burden by up to 18% in highly disadvantaged 

census tracts. 

4.5 Scenario-Based Results 

Scenario-based simulations provided insight into how changes in environmental conditions may 

alter patterns of inequality. Under increased flood frequency scenarios, cumulative burden scores 

rose disproportionately in already vulnerable communities, suggesting that climate intensification 

may exacerbate existing inequities rather than redistribute risk evenly. These results align with 

prior projections indicating that climate change is likely to magnify social disparities unless 

targeted interventions are implemented (Lockwood, 2024; Yadav et al., 2025). 

Conversely, scenarios simulating reductions in drinking water contamination produced measurable 

improvements in predicted health outcomes, particularly in tracts with moderate flood exposure. 

This suggests that targeted infrastructure investments may yield substantial equity gains even in 

the absence of large-scale flood mitigation, supporting findings from community-based and 

systems-oriented environmental justice research (McElwee et al., 2024; Foster et al., 2024). 

Scenario-based flood intensification resulted in an average increase of 22% in predicted 

cumulative burden scores within high-vulnerability tracts, compared to a 9% increase in lower-
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vulnerability areas. In contrast, simulated reductions in drinking water violations produced an 

average 17% decrease in predicted health burden in moderately flood-exposed communities. 

4.6 Summary of Key Results 

Table 3. Summary of principal result patterns identified by the deep learning framework. 

Result category Key finding Supporting literature 

Flood exposure 
Strong spatial clustering in 

socially vulnerable tracts 
Flores et al., 2023; Gray, 2024 

Water contamination 

Persistent violations 

concentrated in disadvantaged 

communities 

García et al., 2023; Petroni, 

2021 

Health burden 
Elevated outcomes associated 

with compound exposures 

Johnson, 2020; Herreros-

Cantis et al., 2024 

Model interpretability 

Flood and water quality 

interactions dominate 

predictions 

Bowers et al., 2024; Zhen et 

al., 2024 

Scenario analysis 
Climate intensification 

amplifies existing inequities 

Lockwood, 2024; Yadav et 

al., 2025 

 

5. Discussion 

5.1 Interpretation of Results in Relation to Existing Literature 

The results of this study demonstrate that cumulative environmental burdens across the U.S. Gulf 

Coast are driven by the interaction of environmental hazards and socioeconomic vulnerability 

rather than by single stressors alone. Census tracts characterized by the co-occurrence of elevated 

flood exposure, persistent drinking water contamination, and high social vulnerability consistently 

exhibited the highest predicted health burdens. This finding is consistent with prior environmental 

justice research showing that environmental risks and social disadvantage reinforce one another in 

coastal regions (Cushing et al., 2023; Stoltz et al., 2024). 
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A notable result is that a substantial proportion of high-burden census tracts identified in this 

analysis are located outside traditionally designated high-risk flood zones. Similar patterns have 

been reported in recent flood risk studies, which show that conventional hazard mapping 

approaches often underestimate risk in socially vulnerable neighborhoods by failing to account for 

socioeconomic and infrastructural factors (Flores et al., 2023; Gray, 2024). The present findings 

extend this literature by demonstrating that integrating water quality and health indicators further 

refines the identification of underserved and overlooked communities. 

5.2 Environmental and Health Drivers of Disparity 

Interpretability analysis indicates that flood exposure and drinking water contamination jointly 

contribute a substantial share of predicted health burden, with socioeconomic vulnerability 

mediating the magnitude of these effects. This aligns with prior studies showing that 

environmental exposures alone do not fully explain health disparities and that social conditions 

play a critical role in shaping outcomes (Johnson, 2020; Herreros-Cantis et al., 2024). 

The observed interaction effects are consistent with findings from interpretable machine learning 

applications in disaster and climate analytics, which emphasize that hazard impacts are often 

amplified in communities with limited adaptive capacity (Bowers et al., 2024; Zhen et al., 2024). 

By explicitly quantifying these interactions, the present study advances prior work that has largely 

examined environmental and social drivers separately. 

5.3 Implications for Policy and Climate Resilience Planning 

The findings have direct implications for climate resilience planning and environmental justice 

policy. The identification of census tracts experiencing disproportionate cumulative burdens 

supports targeted intervention strategies aligned with equity-focused initiatives such as Justice40. 

The scenario-based results further suggest that improvements in drinking water infrastructure may 

produce meaningful health benefits even in communities that continue to face flood exposure, 

reinforcing the importance of integrated adaptation strategies (McElwee et al., 2024; Foster et al., 

2024). 

Additionally, the ability to identify high-burden communities beyond conventional hazard zones 

highlights the need to incorporate cumulative risk analytics into planning and funding decisions. 
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Doing so could improve alignment between risk identification and resource allocation, reducing 

the likelihood that vulnerable communities remain underserved (Flores et al., 2023; Lockwood, 

2024). 

5.4 Limitations and Future Research 

Several limitations should be acknowledged. The analysis relies on publicly available datasets, 

which may vary in temporal resolution and reporting completeness. Census tract–level analysis 

may also obscure intra-tract variation in exposure and vulnerability. Furthermore, the scenario-

based analyses are illustrative and do not capture dynamic feedback or long-term adaptation 

processes (Majemite et al., 2024; Hlal et al., 2025). 

Future research could extend this framework to additional hazards such as heat or air pollution, 

apply it to other coastal regions, or integrate community-generated data to enhance contextual 

relevance and legitimacy (McElwee et al., 2024; Winker et al., 2024). 

6. Conclusions 

This study presents an integrated and interpretable deep learning framework for assessing 

cumulative environmental burdens and associated health disparities across the U.S. Gulf Coast. 

By jointly modeling drinking water contamination, flood and climate exposure, health outcomes, 

and socioeconomic vulnerability at the census tract level, the analysis provides decision-relevant 

insights into the distribution of climate-related inequities. 

The results show that communities experiencing the greatest health burdens are those where 

environmental hazards intersect with social vulnerability, and that many such communities are not 

captured by conventional hazard assessment approaches. Methodologically, the study 

demonstrates that multi-modal, multi-task deep learning combined with interpretability techniques 

can support transparent and robust cumulative risk assessment in policy-relevant contexts. 

The proposed framework offers a scalable tool for supporting equitable climate resilience planning 

and environmental justice decision-making. While the empirical focus is the U.S. Gulf Coast, the 

approach is transferable to other regions and hazard contexts. As climate change continues to 

intensify compound risks, integrated and interpretable analytical frameworks such as this will be 

essential for guiding evidence-based and equity-centered climate adaptation efforts. 
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